

HOCHSCHULE OSNABRÜCK

UNIVERSITY OF APPLIED SCIENCES

IMPACT OF REDUCED PHOSPHORUS FERTILIZATION ON GOLF COURSE PUTTING GREENS

MASTER THESIS PRESENTATION

PUTTING GREEN AT DUETE-DE (NOVEMBER-2020

ANNE BORCHERT

OCTOBER 29, 2021

GOLF COURSE PUTTING GREENS

Golfer's needs...

- Firm surface (BAKER 2004)
- Fresh and uniform turfgrass color
- Evenness and trueness (DAHL JENSEN 2012)
- Ball roll distance (green speed) (NOLAN 2015)

Course manager's targets...

- Healthy, homogeneous turfgrass sward
- High tiller density
- Few areas of bare soil

(MC CARTY 2011; MÜLLER-BECK 2019)

Turfgrass quality

Playing quality

IMPACT OF P FERTILIZATION ON PLAYING QUALITY AND TURFGRASS QUALITY

CURRENT DISCUSSION

- Achine (COP- one can ensure good -achine Which one can ensure good -achine

್ರಶ; JASINSKI 2014)

SUSPHOS PROJECT: SUSTAINABLE P FERTILIZATION ON GOLF COURSES STERF project from 2017 – 2020; project leader T. S. Aamlid (NIBIO Landvik)

- 5 experimental sites
- 3 fertilization recommendations
 (+ Control without P application)

The data collected in the SUSPHOS project were the basis of my master thesis.

INE BORCHER

EXPERIMENTAL SITES IN FIVE COUNTRIES

Fig. 1: Geographical location of the five experimental sites (GOOGLE EARTH 2021).

P RECOMMENDATIONS (TREATMENTS)

Sufficiency Level of Available Nutrients (SLAN)

- USA
- Mehlich-3 extraction (< pH 2.5)
- SLAN threshold: > 54 mg kg⁻¹ soil ("no response to P fertilization")

Minimum Levels for Sustainable Nutrition (MLSN) (WOODS et al. 2014, 2016, 2020)

- USA
- Mehlich-3 extraction (< pH 2.5)
- Statistical model based on soil samples from greens with good quality
- MLSN threshold: > 18 mg kg⁻¹ soil

Scandinavian Precision Fertilization (SPF)

- Scandinavia
- Nutrient ratio in plant (N:P:K:Mg:S)
- P rate: 12 % of annual N rate

(ERICSSON et al. 2015; KVALBEIN and AAMLID 2016)

(CARROW et al. 2004a, b)

Soil samples and analysis

Nutrient ratio in plant

MASTER SUBJECT

Evaluate the impact of the selected P recommendations on...

...at the 5 golf course putting greens over 4 trial years (Duete-DE: 3-year trial).

HYPOTHESES

A lower P rate due to MSLN and SPF recommendations in comparison to a higher P rate due to SLAN recommendation would

- decrease soil PO₄-P concentrations without negatively affecting turfgrass quality,
- suppress Poa annua in the sward, but
- adversely decrease turfgrass rooting depth.

SPF recommendation would

- result in higher P rates and thus unnecessarily higher soil PO₄-P concentrations compared to MLSN recommendation,
- while turfgrass quality would remain the same.

IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 02 MATERIALS AND METHODS

SOIL SAMPLING AND ASSESSMENTS

Soil samples (0 – 20cm) and analyses

- one pooled sample (10 punctures) per plot
- P extraction Mehlich-3 (PO₄-P, calorimetrically) started and once
- Soil pH (H₂O method)

Overall impression

- Visual ratings 1 9 (9 = best)
- ≥ 6 considered "acceptable" (MORRIS 2004)

Coverage (%)

- Sown species
- Poa annua, weeds, moss
- Disease
- Bare soil

Rooting depth (mm)

Measured on intact hanging root cylinder

= 100%

Fig. 1: Soil sampling at Duete-DE

Fig. 2: Measurement of rooting depth at Landvik-NO

10

Before the trial started and once a month from Apr. – Nov. each year (number of assessments differ for each year and site)

Dates

Before the trial

a year in Nov.

EXPERIMENTAL DESIGN AND STATISTICS

- Latin square design
- 4 treatments ,4 replicates
- 3-4 trial years

Fig. 3: Experimental green with plots at Duete-DE.

Tab. 1: Overview of descriptive and inferential statistics.

Parameter	Measurement scale	Descriptive	Inferential	Post-Hoc Tests	-
Soil samples					
PO ₄ -P,	Interval	Average	ANOVA, repeated	HSD,	
рН			measurements with mixed model	emmeans, contrasts	n = 4 per year
Assessments					_
Overall impression	Ordinal	Median, Minimum,	Kruskal-Wallis rank	Nemenyi-	ר - ר
		Maximum, Q1, Q3	sum test, Friedman rank sum test	Test	
Coverage	Interval	Average, Median,	ANOVA, repeated	HSD, LSD,	
(Poa annua)		Minimum, Maximum, Q1, Q3	measurements with mixed model	emmeans, contrasts	n = 12 - 32
Rooting depth	Interval	Average, Minimum, Maximum, Q1, Q3	ANOVA, repeated measurements with mixed model	HSD, LSD, emmeans, contrasts	per year and site

HSD:Tukey's Honest Significant Difference; LSD: Fischer's Least Significant Difference;

Q1: Quantile 1; Q3: Quantile 3.

➔ Different measurement scales and data structures necessitated the use of different statistics!

EVALUATION OF THE CLIMATE CONDITIONS AT THE SITES Long-term annual air temperature (° C) and long-term annual precipitation (mm)

Fig. 4: Geographical location and climate of the five experimental sites

→ The chosen experimental sites differ in climate conditions.

HOCHSCHULE OSNABRÜCK

UNIVERSITY OF APPLIED SCIENCES

EVALUATION OF THE SITE CHARACTERISTICS

(Photos: a) PRÄMAßING, b) SINTORN, c) CHEN, d) AAMLID, e) DOKKUMA)

Exper. site Characteristics	Duete-DE a)	Falken-SE	Jingshan-CN	Landvik-NO	Princen-NL
Putting green construction	FLL K3	Push-up / USGA	USGA	USGA	USGA
Sown species	Agrostis stolonifera	Agrostis stolonifera	Agrostis stolonifera	Agrostis stolonifera	Festuca rubra + Agrostis capillaris
Poa annua coverage (%)	55	50	0	10	5
N rates (g m ⁻² y ⁻¹)	18 – 27	19 – 25	10 – 12	12 – 25	3 - 6
Soil pH	6.7	6.0	8.3	5.9	6.3
Soil PO ₄ -P (mg kg ⁻¹ soil)	14 – 17	33 – 37	7 – 9	25 – 29	6 - 7
PSC (mmol kg ⁻¹ soil)	4.60	6.72	8.04	6.41	4.26
DPS (%)	36	37	15	24	17
Ca (cmol c ⁺ kg ⁻¹ soil)	2.30	0.93	4.60	0.50	1.00

→ The sites differed clearly in site characteristics. Did that have any influence?

PO₄-P CONCENTRATIONS ACROSS ALL YEARS FOR ALL SITES

Tab. 2: Average soil PO₄-P concentration (mg kg⁻¹ soil) across all sampling dates for each experimental site in response to different P treatments. Different letters indicate differences between treatments (Tukey contrasts, $\alpha = 0.05$).

Treatment		PO₄-P (mg kg ⁻¹ soil)								
	Duete-DE	Falken-SE	Jingshan-CN	Landvik-NO	Princen-NL					
Control	16 a	29 a	9 a	25 a	8 a					
MLSN	23 ab	28 a	18 b	25 a	9 a					
SPF	27 b	29 a	16 ab	31 a	8 a					
SLAN	41 c	45 b	40 c	46 b	23 b					
p-value	0.001	0.007	0.000	0.003	0.000					

- MLSN and SPF: Significantly lower PO₄-P compared to SLAN
- No significant differences between MLSN and SPF
- Control: Rarely significantly lower PO₄-P compared to MLSN or SPF, but always compared to SLAN

→ Despite the site characteristic differences, soil PO₄-P concentrations for MLSN and SPF were significantly lower compared to SLAN on all sites but ...

...why were PO₄-P levels different for MLSN or SLAN between the sites? And what about P rates – were they the same on all sites?

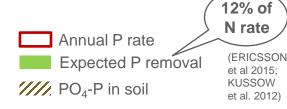
IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 03 RESULTS AND DISCUSSION

RELATIONSHIP BETWEEN RECOMMENDATION, P RATE, AND SOIL PO₄-P

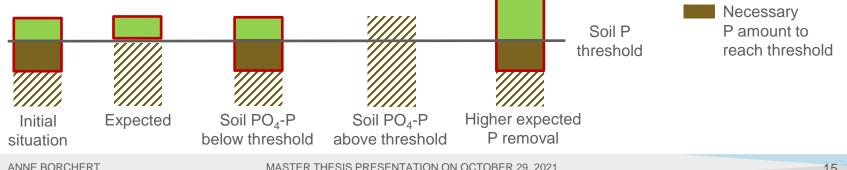
Recommendations based on N:P ratio (SPF)

Initial

situation

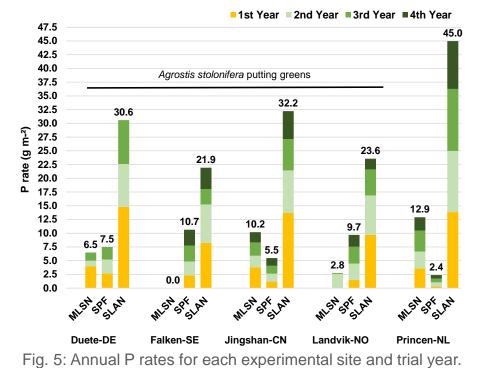

Expected

Soil PO₄-P decreases



Soil PO₄-P increases

Higher expected P removal



Recommendations based on soil sampling and analysis (SLAN, MLSN)

IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 03 RESULTS AND DISCUSSION

ANNUAL AND TOTAL P RATES

- Depending on the site and year: P rates were different
- Depending on the treatment:
 P rates were different
- MLSN and SPF: Lower annual and total P rates compared to SLAN
- MLSN total P rates < SPF total P rates: Duete-DE, Falken-SE, Landvik-NO
- MLSN total P rates > SPF total P rates: Jingshan-CN and Princen-NL

Sites with low initial soil P

→ P rates differed depending on recommendation, trial year, and/or site.

CHANGES IN PO₄-P CONCENTRATIONS ON ALL SITES

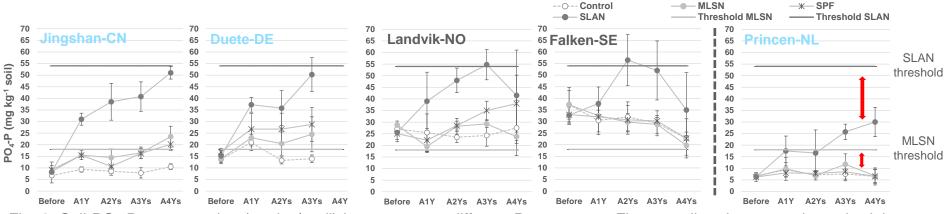


Fig. 6: Soil PO_4 -P concentration (mg kg⁻¹ soil) in response to different P treatments. Five sampling dates, one in each trial year (four for Duete-DE). Error bars represent the spatial variation at plot scale (n = 4).

- SLAN: Increased soil PO₄-P but just 2 of 5 sites reached the threshold
- MLSN: <u>At all Agrostis sites</u>: Soil PO₄-P was above threshold but at Jingshan-CN not before 3rd trial year

<u>At the Fr + Ac site</u>: Soil PO₄-P was below threshold

What might

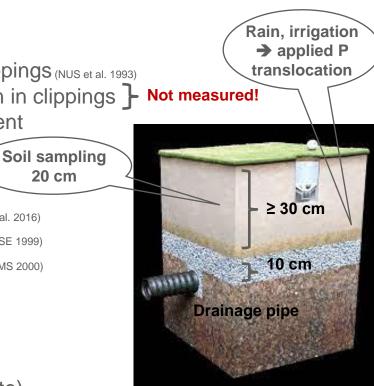
be the reasons

for these gaps?

IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 03 RESULTS AND DISCUSSION

THE REASONS MIGHT BE...

Higher plant uptake than predicted


- Poa pratensis: + P supply, + P concentration in clippings (NUS et al. 1993)
- P uptake calculation: biomass and P concentration in clippings 7 Not measured!
- → Weak indicator: constant soil PO₄-P in SPF treatment

Soil extraction method

- 20 cm Different extracting methods lead to different results due to different extracted P pools (WUENSCHER et al. 2016)
- Calcareous soils OLSEN recommended (ZORN and KRAUSE 1999) but Mehlich-3 suitable for most soils (FRANK et al. 1998; SIMS 2000)
- \rightarrow Methods might be more important for P availability, but cannot explain the gap \rightarrow P rate calculation

P losses due to leaching

- Green construction (large pores, high infiltration rate) (USGA 2018)
- Low P retention due to low Al + Fe (PSC), low Ca

HOCHSCHULE OSNABRÜCK

RSITY OF APPLIED SCIENCES

Fig. 7: USGA putting green construction (USGA 2018) MAGUIRE et al. 2001

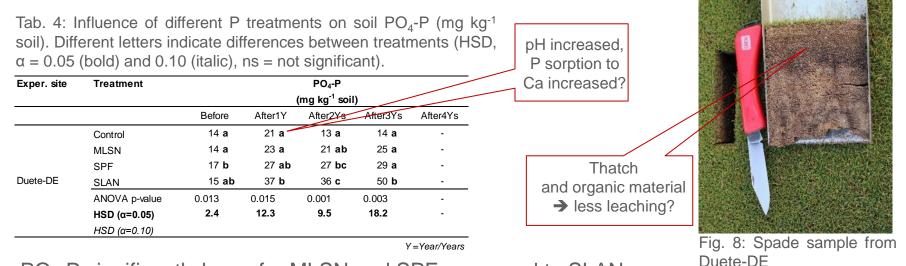
(AMELUNG 2018;

PO₄-P CONCENTRATIONS AT JINGSHAN-CN Calcareous; pH high; PSC high, DPS low, Ca high, P rates MLSN > SPF

Tab. 3: Influence of different P treatments on soil PO₄-P (mg kg⁻¹ soil). Different letters indicate differences between treatments (HSD, $\alpha = 0.05$ (bold) and 0.10 (italic), ns = not significant).

							DH de	ecreased,		
Exper. site	Treatment			PO₄-P (mg kg⁻¹ soil)		thus P	sorption to		
		Before	After1Y	After2Ys	After3Ys	After4Ys	•	Fe might		[]
	Control	7	9 a	9 a	8 a	11 a 🧹	havei	increased		Warm and dry
	MLSN	9	16 b	15 a	17 a	24 b			_	climate: probably high
	SPF	9	16 b	11 a	16 a	20 b				. , , , ,
Jingshan-CN	SLAN	8	31 c	39 b	41 b	51 c				irrigation rates, rain
	ANOVA p-value	0.537	0.000	0.001	0.000	0.000				seldom with high
	HSD (α=0.05)	ns	5.4	12.5	9.0	7.6				rates
	HSD (a=0.10)									
					Y	Y=Year/Years				

• PO_4 -P concentrations were lower than expected for MLSN and SLAN \rightarrow most likely leaching


- PSC and DPS not useful → P bounded to Ca in high pH soils (AMELUNG 2018; KREUSER 2012)
- P rates for SPF were twice as low as for MLSN → N:P ratio better to reduce P rates

20

PO₄-P CONCENTRATIONS AT DUETE-DE

pH slightly higher; PSC low, DPS high, Ca high, P rates MLSN < SPF

- PO₄-P significantly lower for MLSN and SPF compared to SLAN
- PO₄-P concentrations were lower than expected for SLAN, not for MLSN
 → P retention in soil enough for MLSN threshold thus low PSC
- Recommendations based on soil analysis (and low threshold) better than N:P ratio
 MASTER THESIS PRESENTATION ON OCTOBER 29, 2021

PO₄-P CONCENTRATIONS AT FALKEN-SE pH slightly lower; PSC medium, DPS high, Ca low, P rates MLSN < SPF

Tab. 5: Influence of different P treatments on soil PO_4 -P (mg kg⁻¹ soil). Different letters indicate differences between treatments (HSD, $\alpha = 0.05$ (bold) and 0.10 (italic), ns = not significant).

Exper. site	Treatment			PO₄-P				
				(mg kg ⁻¹ soil	I)			Breakdown of
		Before	After1Y	After2Ys	After3Ys	After4Ys		irrigation system
	Control	37	31	32 a	29 a	23 ab	\square	1
	MLSN	37	33	30 a	29 a	20 a		
	SPF	33	32	31 a	30 a	23 ab		
Falken-SE	SLAN	33	38	57 b	52 b	35 b		
	ANOVA p-value	0.613	0.431	0.004	0.002	0.057		
	HSD (α=0.05)	ns	ns	16.4	12.6	ns		
	HSD (a=0.10)					13.0		
					}	/=Year/Years		

- PO₄-P significantly lower for MLSN and SPF compared to SLAN from 2nd year
- PO₄-P decreased slowly for MLSN due to no P application (still above threshold)
- P retention on this green, probably less leaching but is it necessary to increase soil PO₄-P?

INTERIM CONCLUSION

- Using MLSN and SPF fertilization recommendations, P rates could be reduced compared to SLAN recommendation at all sites.
- Average soil PO₄-P concentrations were significantly lower for MLSN or SPF recommendations compared to SLAN at all sites.
 Nevertheless there were considerable differences between the putting greens!
- On the greens with initial medium soil P levels (> 18 mg kg⁻¹ soil; Falken-SE and Landvik-NO) and at Duete-DE (low initial soil P level), the MLSN recommendation led to lower P rates than SPF. The reverse was the case on golf greens with low initial levels and low P retention (Jingshan-CN and Princen-NL) probably due to P losses.
- P rates according to MLSN and SPF recommendations were sufficient to meet the MLSN threshold on most sites, except at Princen-NL and in some years at Jingshan-CN. Soil PO₄-P concentrations were almost always below SLAN threshold.
 How did that affect turfgrass quality?

IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 03 RESULTS AND DISCUSSION

OVERALL IMPRESSION

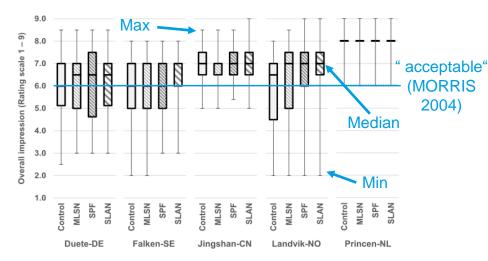


Fig. 9: Impact of P treatments on overall impression (scale 1 - 9) across all dates for each site.

- Median visual turfgrass quality was acceptable or even better (≥ 6.0 – 8.0) (MORRIS 2004)
 - → Good quality thus lower P rates and P levels

Tab. 6: Mean overall impression (Rating scale 1 - 9) in response to different P at Duete-DE and Jingshan-CN. Different letters indicate differences between the trial years for each P treatment (p-value < 0.05).

Exper. site	Treatment		Overall impression (Rating scale 1 - 9)								
		Before ^a	1st Year	2nd Year	3rd Year	4th Year	p-value				
	Control	2.5	5.5 a	6.0 ab	7.0 b	-	0.018				
	MLSN	2.5	5.5 a	6.5 ab	7.0 b	-	0.022				
Duete-DE	SPF	2.5	5.0 a	6.5 ab	7.5 b	-	0.018				
	SLAN	2.5	5.5 a	6.5 ab	7.3 b		0.018				
	Control	5.8	6.3	7.0	7.0	7.0	0.100				
	MLSN	5.3	6.3 a	7.0 ab	7.0 ab	7.0 b	0.044				
Jingshan-CN	SPF	5.0	6.5 a	7.0 ab	7.0 ab	7.8 b	0.010				
	SLAN	5.3	6.3 a	7.0 ab	7.0 ab	8.0 b	0.010				

^a Results reported at the first assessment date (Jingshan-CN: July 2017, Duete-DE: April 2018) before the trial started. Values not used for statistical analysis (Friedman test).

Overall impression increased over time for all treatments at Duete-DE (less *Poa annua*) and for all P treatments at Jingshan-CN (higher P availability) IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 03 RESULTS AND DISCUSSION

POA ANNUA COVERAGE

 High P supply promotes Poa annua, (GUERTAL and MC ELROY 2018)
 low P supply reduces Poa annua (THIEME-HACK 2018)

→ Could not be confirmed in this study (no significant differences 5% level between treatments across all years)

• 2-year study: no P application reduced *Poa annua* by 2 % (RILEY et al. 2013)

→Could be confirmed in this study at Falken-SE (significant differences in 2nd year; 2 – 3 % decline by lower P rates)

- P rates better indicator for *Poa annua* encroachment than soil PO₄-P (RILEY et al. 2013)
- No correlation found in this study either

HOCHSCHULE OSNABRÜCK UNIVERSITY OF APPLIED SCIENCES

Tab 7: Influence of different P treatments on *Poa annua* coverage (%) Different letters indicate differences between treatments (Tukev contrasts, $\alpha = 0.05$; ns = not significant).

Exper.site	Treatment			Poa annua			
				(%)			
		Before ^a	1st Year	2nd Year	3rd Year	4th Year	All years ^c
	Control	49.1	44.4	35.5	32.6	-	37.2
	MLSN	51.5	46.7	36.8	33.3	-	38.6
Duete-DE	SPF	48.8	45.4	38.2	32.2	-	38.3
Duele-DE	SLAN	50.5	45.7	36.3	33.8	-	38.3
	p-value	0.816 ^b	0.764	0.213	0.183	-	0.274
	Tukey (α=0.05)	ns	ns	ns	ns	-	ns
	Control	47.3	48.2	48.4 a	47.1 a	47.5	47.8
	MLSN	50.0	50.3	47.9 a	47.9 ab	46.7	47.9
Falken-SE	SPF	49.0	49.7	49.0 a	50.1 ab	47.3	48.9
	SLAN	53.3	53.6	50.8 b	50.6 b	9.1	50.7
	p-value	0.195 ^b	0.316	0.005	0.023	0.407	0.077
	Tukey (α=0.05)	ns	ns			ns	ns
	Control	6.3	5.5	7.6	8.1	3.3 a	5.9
	MLSN	8.8	7.7	14.6	14.5	6.0 ab	10.4
Landvik-NO	SPF	6.5	7.4	12.6	18.1	9.4 b	12.1
Landvik-INO	SLAN	4.3	4.7	10.1	8.8	6.0 ab	7.3
	p-value	0.408 ^b	0.620	0.154	0.179	0.054	0.066
	Tukey (α=0.05)	ns	ns	ns	ns		ns
	Control	5.0	2.7	2.5	8.9	8.2	6.1
	MLSN	5.0	2.6	2.8	11.1	6.5	6.3
Dringon MI	SPF	5.0	2.6	3.0	13.7	6.5	7.1
Princen-NL	SLAN	5.0	2.4	3.3	12.9	6.5	6.9
	p-value	-	0.972	0.445	0.462	0.950	0.803
	Tukey (α=0.05)	ns	ns	ns	ns	ns	ns

^a Poa annua registered at the first assessment date (Duete-DE = April, Falken-SE = July, Landvik-NO = June, Princen-NL = July). ^b Statistics: ANOVA and HSD (α=0.05). ^c Duete-DE 3-year trial, all others 4-year trials. IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 03 RESULTS AND DISCUSSION

ROOTING DEPTH

- Across all years: No significant differences in rooting depth between recommendations on 4 of 5 sites
 - Probably due to high distribution of the subsamples
- Jingshan-CN: Significantly increased rooting depth due to higher P rates (SLAN), which most likely increased plant available P (MARSCHNER and RENGEL 2012)
- Landvik-NO: Increased rooting depth due to no P application

→Indicating: Lower rates stimulate root growth

(LYONS et al. 2008)

30 to 55 mm after 3 years

Tab 8: Influence of P treatments on rooting depth (mm).

Exper. site	Treatment		R	ooting dep	th		
				(mm)			
		Before ^a	1st Year	2nd Year	3rd Year	4th Year	All year
	Control	30	41	61	50	-	51
	MLSN	30	39	61	54	-	52
Duete-DE	SPF	28	39	64	55	-	53
Duele-DE	SLAN	27	37	67	55	-	54
	p-value	0.714 ^b	0.110	0.168	0.349	-	0.518
	Tukey (α=0.05)	ns	ns	ns	ns	-	ns
	Control	130	131	148	160 ab	130	143
	MLSN	125	127	150	156 a	135	144
Faller 0 F	SPF	125	129	153	160 ab	135	146
Falken-SE	SLAN	130	138	159	169 b	134	151
	p-value	0.834 ^b	0.414	0.341	0.029	0.619	0.100
	Tukey (α=0.05)	ns	ns	ns		ns	ns
	Control	159	122	118	105 a	110 a	111
	MLSN	149	128	119	108 a	112 ab	115
lin maken ON	SPF	142	130	118	118 b	113 ab	118
Jingshan-CN	SLAN	157	130	121	120 b	117 b	121
	p-value	0.366 ^b	0.273	0.715	0.012	0.034	0.037
	Tukey (α=0.05)	ns	ns	ns			
	Control	50	53	86	89	117	91
	MLSN	78	65	67	78	93	78
	SPF	56	69	60	75	95	78
Landvik-NO	SLAN	66	58	63	84	91	78
	p-value	0.536 ^b	0.691	0.163	0.224	0.088	0.159
	Tukey (α=0.05)	ns	ns	ns	ns	ns	ns
	Control	81	78	98	93	90	90
	MLSN	84	82	100	89	95	92
Drive or All	SPF	86	85	103	85	95	93
Princen-NL	SLAN	88	82	102	99	104	98
	p-value	0.726 ^b	0.195	0.724	0.079	0.159	0.095
	Tukey (α=0.05)	ns	ns	ns	ns	ns	ns

^a Values measured at the first assessment date (Duete-DE = April, Falken-SE = July, Landvik-NO = June,

Princen-NL = July). ^bStatistics: ANOVA and HSD (α=0.05). ^cDuete-DE 3-year trial, all others 4-year trials

IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 04 CONCLUSION

✓ Yes O Not clear X No

A lower P rate due to MSLN and SPF recommendations in comparison to a higher P rate due to SLAN recommendation would

- decrease soil PO₄-P concentrations without negatively affecting turfgrass quality, ✓
- suppress Poa annua in the sward, but ()
- adversely decrease turfgrass rooting depth.

SPF recommendation would

- result in higher P rates and thus unnecessarily higher soil PO₄-P concentrations O compared to MLSN recommendation,
- while turfgrass quality would remain the same.

IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 04 CONCLUSION

FOR PRACTICAL FERTILIZATION

- Each putting green is different, thus there is no "the one and only" recommendation that reduces P fertilization and at the same time maintains good turfgrass quality.
- To switch from SLAN recommendation to MLSN recommendation reduces fertilizer input without negatively influencing turfgrass quality regardless of putting green but...
 - The P savings will differ between putting greens.
 - Some greens might be more sensitive to lower soil PO₄-P concentrations or reduced P rates than others.
 - Soil PO₄-P concentrations might be even lower than MLSN threshold without degrading turfgrass quality and playing quality.

NEVERTHELESS: P fertilization recommendations based on soil samples might not be the best choice for sustainable P fertilization on putting greens as long as their thresholds are above soil P retention. IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 04 CONCLUSION

FOR PRACTICAL FERTILIZATION

- To switch from SLAN recommendation to SPF recommendation reduces fertilizer input without negatively influencing turfgrass quality regardless of putting green but...
 - When using SPF, it must be kept in mind that special situations increasing N rate (i.g. winter damage) will increase the P rate.
 - On putting greens with low soil P retention recommendations based on N:P will probably lead to lower P fertilization than recommendation based on soil analysis.
- For sustainable P fertilization it seems to be more important to applicate P in low rates frequently and to keep an eye on the conditions at the application dates (rainfall, irrigation).
- Low single P rates might also support to suppress Poa annua.

IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 04 CONCLUSION

FOR FUTURE RESEARCH

I would chose...


- Less or more uniform experimental sites
- Same number of assessment dates for each site

I would record...

- Weather and irrigation
- Biomass
- Objective assessments of turfgrass quality

I would analyse...

- Total P concentration in soil
- P in drainage water
- P and N in clippings

HOCHSCHULE OSNABRÜCK

UNIVERSITY OF APPLIED SCIENCES

- Test different soil extraction methods to find out, which one describes rootzone P availability best
- Develop new soil characteristics or other parameters that (better) describe or predict:
 - Rootzone P sorption capacity
 - P leaching risk
 - Turfgrass sufficient P supply

IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 04 CONCLUSION

P FERTILIZATION ON GOLF GREENS "GOLF IS DECEPTIVELY SIMPLY AND ENDLESSLY COMPLICATED."

- ARNOLD PALMER -

MASTER THESIS PRESENTATION ON OCTOBER 29, 2021

IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 04 CONCLUSION

REFERENCES I

AMELUNG, W. (2018): Böden als Pflanzenstandorte. In: Amelung, W., Blume, H.-P., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., Wilke, B.-M. (eds.) "Scheffer/Schachtschabel Lehrbuch der Bodenkunde". Berlin, Germany: Springer Spektrum, 536 – 547.

BAKER, S. W. (2004): Cononstruction methods for public sector and professional sports pitches: A review. Acta Horticulturae 661, 27 - 37.

BARIS, R. D., COHEN, S. Z., BARNES, N. L., LAM, J., MA, Q. (2010): Quantitative analysis of over 20 years of golf course monitoring studies. Environmental toxicology and chemistry 29, 1224 – 1236

CARROW, R. N., WADDINGTON, D. V., RIEKE, P. E. (2001): Turfgrass Soil Fertility and Chemical Problems – Assessment and Management. Hoboken, NJ, USA: John Wiley & Sons.

CARROW, R. N., STOWELL, L. J., GELERNTER, W. D., DAVIS, S., DUNCAN, R. R., SKORULSKI, J. (2004a): Clarifying soil testing: II. Choosing SLAN extractants for macronutrients. Golf Course Management 72, 189 – 193.

CARROW, R. N., STOWELL, L. J., GELERNTER, W. D., DAVIS, S., DUNCAN, R. R., SKORULSKI, J. (2004b): Clarifying soil testing: III. SLAN sufficiency ranges and recommendations. Golf Course Management 72, 194 – 198

CLIMATE-DATA (2021): Climate in Osnabrück (Germany). https://de.climate-data.org/europa/deutschland/niedersachsen/osnabrueck-2121/#climate-table (last accessed June 5, 2021).

CORDELL, D., DRANGERT, J.-O., WHITE, S. (2009): The story of phosphorus: Global food security and food for thought. Global Environmental Change 19, 292 - 305.

DACOSTA, M., HUANG, B. (2006): Osmotic adjustment associated with variation in bentgrass tolerance to drought stress. Journal of the American Society for Horticultural Science 131, 338 – 344.

DAHL JENSEN, A. M. (2012): Playing quality on the golf course. Sterf brochure. http://www.sterf.org/Media/Get/1223/playing-quality-on-the-golf-course.pdf (last accessed October 5, 2021).

DONKERS, K. (2021): Compiled weather data of the weather station Gilze-Rijen 1990 – 2020 (The Netherlands). Email from April 20, 2021. Royal Netherlands Golf Federation.

ERICSSON, T., BLOMBÄCK, K., KVALBEIN, A. (2015): Precision fertilisation – from theory to practice. Sterf brochure. http://www.sterf.org/Media/Get/1228/precision-fertilisation-from-theory-to-practice.pdf (last accessed October 5, 2021)

FRANK K., BEEGLE D., DENNING J. (1998): Phosphorus. In: BROWN, J. R. (ed.) "Recommended Chemical Soil Test Procedures for the North Central Region". Columbia North Central Regional Research Publication 221, Missouri Agricultural Experiment Station, 21 – 30.

FRANK, K. W., GUERTAL, E. A. (2013): Potassium and phosphorus research in turfgrass. In: Stier, J. C., Horgan, B. P., Bonos, S. A. (eds.) "Turfgrass: Biology, Use, and Management". Madison, WI, USA: American Society of Agronomy; Crop Science Society of America, 493 – 519.

GILBERT, N. (2009): Environment: The disappearing nutrient. Nature 461, 716 - 718.

GOOGLE EARTH (2021): Map of the earth. Google Earth version 7.3.3.7786 (last accessed October 10, 2021).

GUERTAL, E. A., MC ELROY, J. S. (2018): Soil type and phosphorus fertilization affect Poa annua growth and seedhead production. Agronomy Journal 110, 2165 - 2170.

JASINSKI, S. (2014): Phosphate rock statistics and information. U.S. Department of the Interior: National minerals information center. https://www.usgs.gov/centers/nmic/

phosphate-rock-statistics-and-information (last accessed October 5, 2021).

KREUSER, W. C., PAGLIARI, P. H., SOLDAT, D. J. (2012): Creeping bentgrass putting green Mehlich-3 soil test phosphorus requirements. Crop Science 52, 1385 – 1392.

KUSSOW, W. R., SOLDAT, D. J., KREUSER, W. C., HOULIHAN, S. M. (2012): Evidence, regulation, and consequences of nitrogen-driven nutrient demand by turfgrass. International Scholarly Research Network Agronomy 2012, 1 – 9.

KVALBEIN, A., AAMLID, T. S. (2016): Gjødsling som ledd i integrert plantevern. Faktablad - Integrert plantevern. Sterf broschure. http://www.sterf.org/Media/Get/2433/gjodsling-norsk-160420.pdf.pdf (last accessed October 5, 2021).

LYONS, E. M., SNYDER, R. H., LYNCH, J. P. (2008): Regulation of root distribution and depth by phosphorus localization in Agrostis stolonifera. HortScience 43, 2203 – 2209.

IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 04 CONCLUSION

REFERENCES II

MAGUIRE, R. O., FOY, R. H., BAILEY, J. S., SIMS, J. T. (2001): Estimation of the phosphorus sorption capacity of acidic soils in Ireland. European Journal of Soil Science 52, 479 – 487. MARSCHNER, P., RENGEL, Z. (2012): Nutrient availability in soils. In: Marschner, P. (ed.): Marschner's Mineral Nutrition of Higher Plants. Amsterdam, The Netherlands; Boston, MA, USA: Academic Press, 3 – 5. MC CARTY, L. B. (2011): Best Golf Course Management Practices – Construction, Watering, Fertilizing, Cultural Practices, and Pest Management Strategies to Maintain Golf Course Turf with Minimal Environmental Impact. Upper Saddle River, NJ, USA: Prentice Hall.

MORRIS, K. N. (2004): A guide to NTEP turfgrass ratings. National Turfgrass Evaluation Program http://www.ntep.org/reports/ratings.htm#quality (last accessed October 5, 2021).

MÜLLER-BECK, K. (2019): Grünsqualität – Smoothness, Trueness, Firmness. Presentation at the GVD-Jahrestagung 2019. https://www.rasengesellschaft.de/files/downloads/ rasenthema/2019/Vortrags-Handout%20K.%20Müller-Beck_08_2019.pdf (last accessed July 5, 2021).

NOLAN, C. (2015): Greens playing quality. Sterf Seminar Copenhagen and Hoor. http://www.sterf.org/Media/Get/2179/nolan-greens-playing-quality.pdf (last accessed June 10, 2021).

NUS, J. L., CHRISTIANS, N. E., DIESBURG, K. L. (1993): High phosphorus applications influence soil-available potassium and kentucky bluegrass copper content. HortScience 28, 639 – 641 PESSARAKLI, M. (2008): Handbook of Turfgrass Management and Physiology. Boca Raton, FL, USA: CRC Press.

RALEY, R., LANDSCHOOT, P., BROSNAN, J. T. (2013): Influence of phosphorus and nitrogen on annual bluegrass encroachment in a creeping bentgrass putting green. International Turfgrass Society Research Journal 12, 649 – 655

RICE, P., HORGAN, B. (2010): Nutrient Loss of Runoff from Turf: Effect on Surface Water Quality. USGA Turfgrass and Environmental Research Online 9, 1 – 10

SIMS, J.T. (2000): Soil test phosphorus: Mehlich 3. In: Pierzynski, G. M. (ed.) "Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters". Manhattan, KS, USA: SERA-IEG 17, 17 - 19.

SOLDAT, D. J., PETROVIC, A. M. (2008): The fate and transport of phosphorus in turfgrass ecosystems. Crop Science 48, 2051 – 2065.

THIEME-HACK, M. (2018): Handbuch Rasen. Stuttgart (Hohenheim), Germany: Ulmer.

TOLER, J. E. (2007): Postemergent annual bluegrass control in dormant non-overseeded bermudagrass turf. HortScience 42, 670 - 672.

USGA (2018): A guide to constructing the USGA putting green. https://archive.lib.msu.edu/tic/usgamisc/monos/2018recommendationsmethodputtinggreen.pdf (last accessed July 5, 2021).

VACKERTVÄDER (2021): Climate in Falkenberg (Sweden). https://www.vackertvader.se/falkenberg (last accessed October 5, 2021).

WADDINGTON, D. V., TURNER, T. R., DUICH, J. M., MOBERG, E. L. (1978): Effect of fertilization on Penncross creeping bentgrass. Agronomy Journal 70, 713 - 718.

WISSEMEIER, A. (2019): Pflanzennährstoffe. In: WISSEMEIER, A., OLFS, H.-W. "Diagnose des Ernährungszustands von Kulturpflanzen". Clenze, Germany: ERLING Verlag, 14 – 15.

WOODS, M. S., STOWELL, L. J., GELERNTER, W. D. (2014): Just what the grass requires. Using minimum levels for sustainable nutrition. Golf Course Management 82, 132 – 136, 138.

WOODS, M. S., STOWELL, L. J., GELERNTER, W. D. (2016): Minimum soil nutrient guidelines for turfgrass developed from Mehlich 3 soil test results. PeerJ Preprints 4:e2144v1. https://peerj.com/preprints/2144v1/ (last accessed October 5, 2021).

WOODS, M. S., STOWELL, L. J., GELERNTER, W. D. (2020): A survey of soil nutrient analyses from turfgrass sites in Asia, Europe, and North America. https://mfr.osf.io/render?url=https://osf.io/ej58z/?direct%26mode=render%26action=download%26mode=render (last accessed October 5, 2021).

WUENSCHER, R., UNTERFRAUNER, H., PETICZKA, R., ZEHETNER, F. (2016): A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment 61, 86 – 96.

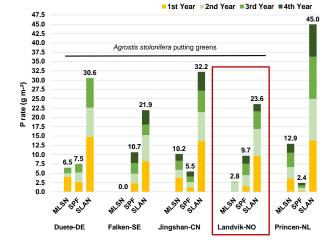
ZORN, W., KRAUSE, O. (1999): Untersuchungen zur Charakterisierung des pflanzen-verfügbaren Phosphats in Thüringer Carbonatböden. Journal of Plant Nutrition and Soil Science 162, 463 – 469 All flags from WIKIPEDIA

PO₄-P CONCENTRATIONS AT PRINCEN-NL PSC low, DPS low, Ca low, P rates MLSN > SPF

Tab. 9: Influence of different P treatments on soil PO_4 -P (mg kg⁻¹ soil). Different letters indicate differences between treatments (HSD, $\alpha = 0.05$ (bold) and 0.10 (italic), ns = not significant).

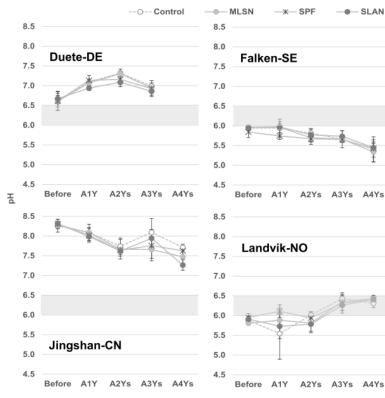
Exper. site	Treatment			PO₄-P					
		(mg kg⁻¹ soil)							
		Before	After1Y	After2Ys	After3Ys	After4Ys			
	Control	7	9	7	8 a	(7 a			
	MLSN	7	10	7	12 a	7 a			
	SPF	6	8	8	9 a	7 a			
Princen-NL	SLAN	6	18	17	26 b	30 b			
	ANOVA p-value	0.403	0.097	0.099	0.000	0.000			
	HSD (α=0.05)	ns	ns	ns	5.5	6.6			
	HSD (α=0.10)								

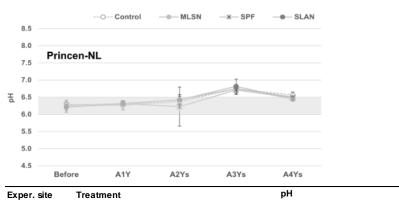
PSC and DPS seem to be useful parameters


- PO₄-P significantly lower for MLSN and SPF compared to SLAN only in last two years
- PO₄-P concentrations were lower than expected for MLSN and SLAN → most likely leaching
- PSC, DPS, and Ca useful parameters Lower N rates due to Fr + Ac
- P rates for SPF were four times lower than for MLSN → N:P ratio better to reduce P rates
 MASTER THESIS PRESENTATION ON OCTOBER 29, 2021
 33

PO₄-P CONCENTRATIONS AT LANDVIK-NO pH optimum; PSC medium, DPS low, Ca low, P rates MLSN < SPF

Tab. 10: Influence of different P treatments on soil PO_4 -P (mg kg⁻¹ soil). Different letters indicate differences between treatments (HSD, $\alpha = 0.05$ (bold) and 0.10 (italic), ns = not significant).


Exper. site	Treatment			PO ₄ -P					
		(mg kg ⁻¹ soil)							
		Before	After1Y	After2Ys	After3Ys	After4Ys			
	Control	27	26 <i>ab</i>	24 a	24 a	28			
	MLSN	29	20 <i>a</i>	28 a	29 a	24			
	SPF	25	22 ab	29 a	35 a	38			
Landvik-NO	SLAN	26	39 b	48 b	55 b	42			
	ANOVA p-value	0.101	0.065	0.000	0.000	0.499			
	HSD (α=0.05)	ns	ns	8.8	11.0	ns			
	HSD (α=0.10)		17.3						
					}	/=Year/Years			


- No P application or low P rates for MLSN affected PO₄-P directly → MLSN good choice
- Certain retention in soil as PO₄-P for SPF and SLAN increases
- Studies have proven considerable losses by P run-off → Risk due to high precipitation

IMPACT OF REDUCED P FERTILIZATION ON PUTTING GREENS 03 RESULTS AND DISCUSSION

SOIL PH

		Before	After1Y	After2Ys	After3Ys	After4Ys
	Control	8.3	8.1	7.7	8.1	7.7 b
	MLSN	8.3	8.1	7.7	7.7	7.5 a t
	SPF	8.3	8.0	7.6	7.8	7.6 b
Jingshan-CN	SLAN	8.3	8.0	7.6	7.9	7.3 a
	ANOVA p-value	0.862	0.761	0.802	0.446	0.020
	HSD (α=0.05)	ns	ns	ns	ns	0.4
	HSD (α=0.10)					

Y=Year/Years

→ Little soil pH response to different recommendations.